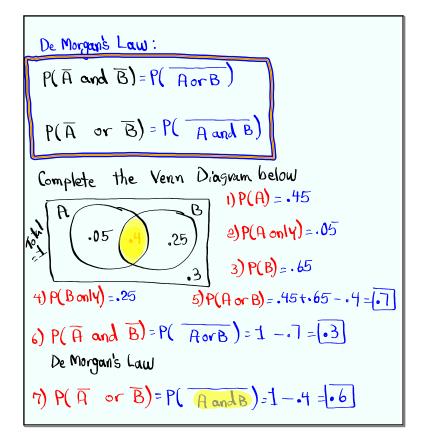
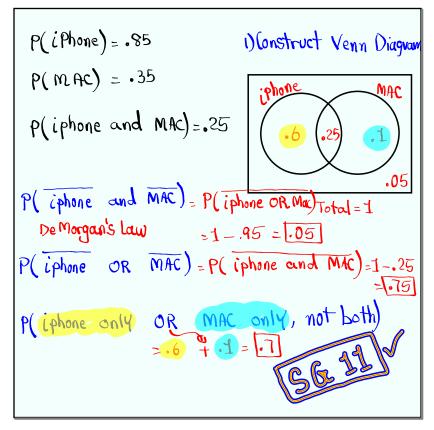


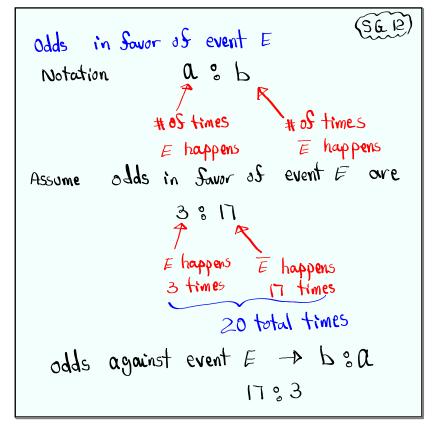
Feb 19-8:47 AM


Addition Rule
Keyword OR
$$P(A \text{ or } B) = P(A) + P(B) - P(Aaddb)$$

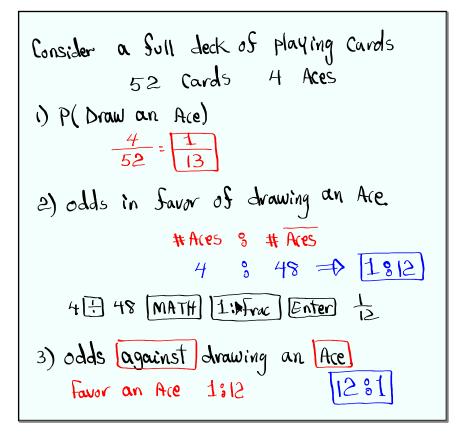
Single Action event
ex: $P(A) = .4$, $P(B) = .7$, $P(A \text{ and } B) = .25$
1) $P(A) = 1 - P(A)$
 $= .6$
2) $P(B) = 1 - .7$
 $= .3$
3) $P(A \text{ and } B) = 1 - P(A \text{ and } B) = 1 - .25 = .75$
4) $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
 $A = .46$
 $A = .41 + .7 - .25 = .85$
Rule
5) $P(A \text{ or } B) = 1 - P(A \text{ or } B) = 1 - .85 = .15$
6) Make Venn Diagram.
 $.4 - .25 = .15$
 $.7 - .25 = .45$
 $Total = 1$


Apr 4-8:14 AM

Γ



Apr 4-8:35 AM



Apr 4-8:57 AM

Apr 4-9:21 AM

Apr 4-9:25 AM

IS odds in Savor of event E are 0.8b,
then
$$P(E) = \frac{a}{a+b}$$
, $P(E) = \frac{b}{a+b}$.
Ex: odds in Savor of event E are 3:47.
1) Sind odds against event E.
47:3
2) Sind $P(E) = \frac{3}{3+47} = \frac{3}{50}$
3) Find $P(E) = \frac{3}{3+47} = \frac{3}{50}$
 $= \frac{47}{50} = \frac{1}{50} = \frac{1}{5$

Apr 4-9:34 AM

Suppose
$$P(Dodgers Win W.S.) = .85$$

 $P(W) = .85$
 $P(W) = .85 = .15$
a) odds in Favor of Dodgers Winning the
World Series. $P(W) : P(W)$
 $.85 : .15$
 $-17:33$
3) odds against? $3:17$

Apr 4-9:44 AM

Multiplication Rule
Keyword AND P(A and B)
Multiple Action event A happens then
B happens
Independent Events
one outcome Joes not change the prob. of
next outcome.
P(Boy)=.5 Sair Coin
P(Girl)=.5 P(Tails)=.5
Multiple - Choice exam
each question has 4 choices but only one Correct
P(Correct)=
$$\frac{3}{4}$$
 Choice

Apr 4-9:51 AM

Г

IS A and B are independent events, then

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

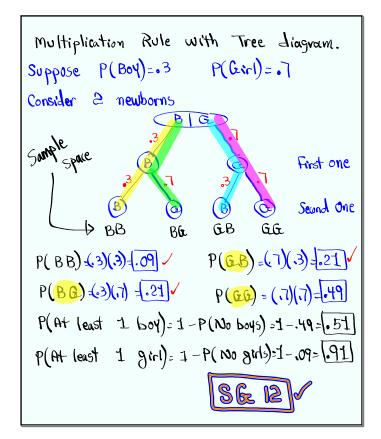
Given $P(A) = \cdot 3$, $P(B) = \cdot 8$
A and B are independent events
 $P(A) = \cdot 1$
 $P(B) = \cdot 2$
 $P(B) = -2$
 $P(B) = -2$

Suppose a loaded coin is tossed twice.

$$P(T) = .3$$
 $P(H) = .7$
 TT $P(TT) = (.3)(.3) = .09$
 TH $P(TH) = (.3)(.7) = .21$ $Total$
 $P(HT) = (.7)(.3) = .21$ $Prob.$
 TH $P(HT) = (.7)(.7) = .49$ $= 1$
 $P(HT) = (.7)(.7) = .49$

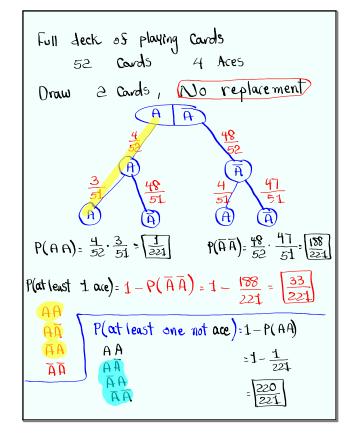
Apr 4-10:03 AM

Consider a full deck of playing Cards

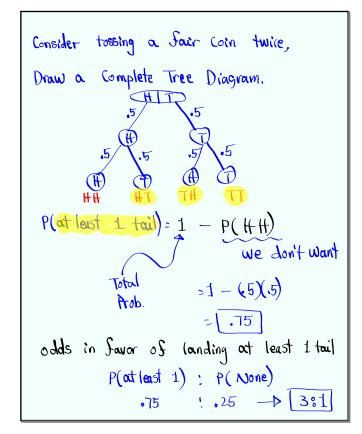

$$5 \ge Cards$$
, 4 Aces
Draw \ge Cards with replacement
(AA) $P(AA) = \frac{4}{52} \cdot \frac{4}{52} = \frac{1}{169}$
Sample (AA) $P(AA) = \frac{4}{52} \cdot \frac{48}{52} = \frac{12}{169}$
AA
 $P(AA) = \frac{4}{52} \cdot \frac{48}{52} = \frac{12}{169}$
 $P(\overline{AA}) = \frac{48}{52} \cdot \frac{48}{52} = \frac{12}{169}$
 $P(\overline{AA}) = \frac{48}{52} \cdot \frac{48}{52} = \frac{144}{169}$
what if you draw 3 Cards with replacement
 $P(AI) aces = \frac{4}{52} \cdot \frac{4}{52} \cdot \frac{4}{52} = \frac{1}{1297}$

A multiple - choice quiz has 4 questions.
Fach question has 5 choices with only
One correct choice.
we are making random guesses.

$$P(C) = \frac{1}{5}$$
 (2) $P(C) = \frac{4}{5}$
3) $P(RII \text{ correct guesses}) = \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{1}{625}$
4) $P(RII \text{ incorrect guesses}) = \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} = \frac{256}{625}$


Г

Apr 4-10:18 AM



Apr 4-10:25 AM

Apr 4-10:35 AM

Apr 4-10:40 AM

Apr 4-10:52 AM